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Outline

•• TableTable--top sources in EUV and XUVtop sources in EUV and XUV
– EUV laser and high-harmonic sources

– Current capabilities

– Future plans for increasing wavelength range and flux in EUV/XUV

•• Applications Applications 

– Metrology, micro-machining, interferometry

– Novel linear and nonlinear spectroscopies

– Ultrafast spectroscopies



History of EUV laser sources

•The first EUV lasers were pumped by large lasers and were single shot
(Matthews et al. PRL 54, 110 (1985); Suckewer et al. PRL 55, 1753 (1985))

LLNL pump laser characteristics:
Pulse energy= 1 kJ/beam
Pulse duration: 0.45 ns
Intensity: 5×1013 W.cm-2

Ne-like Se.  

Foil target used to reduce 
refraction

50nm Formbar 75nm Se



Current EUV discharge-pumped lasers

Ne-like Ar Capillary Discharge Laser : λ=46.9nm
Laser Output Parameters
• Pulse Energy: 0.88 mJ @ 4 Hz
• Average Power ≈ 3.5mW
• Peak Power : 0.6 MW
• Pulsewidth : 1.2 - 1.5 ns
• Beam divergence : 4.6 mrad
• Peak spectral brightness : 2×1025

ph/(mm2 mrad2 sec 10-4 BW)

Peak brightness 
similar to their 
laboratory-size 
predecessors.
Average powers 
similar to He-Ne
laser!

But only at one 
wavelength!



EUV laser sources are “laser-like”

Two pinhole interference measurements

Y. Liu, M. Seminario, F. Tomasel, C. Chang, J. Rocca and D. 
Attwood. Phys. Rev. A  63, 033802  (2001)
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Capillary Discharge 
Soft X-Ray Laser

Characterization of spatial coherence  46.9 nm laser
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Interferometry of dense plasmas
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Applications of EUV lasers



Scaling EUV lasers to shorter wavelengths
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Cl (529) • Extremely fast discharges    (>1013 A/s 
current rise time)

• Combined discharges and ultrafast pulse laser 
excitation

• New approaches to laser-pumped schemes

Scaling to shorter wavelengths is more 
efficient with Ni-like ions

Excitation approaches



Extreme nonlinear optics: high harmonics (HHG)

• Coherent EUV light is generated by focusing an intense laser into a gas
• Broad range of harmonics generated simultaneously from 4.5 - 550 eV
• “Laser-like” coherent beams in EUV (Science 297, 376 (2002), Nature 406, 164 (2000))

Gas jet
But flux low and 
tunability limited in 
UV and VUV!

EUV beam
Fiber



High harmonic sources are spatially coherent
Opt. Lett. 27, 707 (2002)
Science 297, 376 (2002))

hologram reconstruct

hologram reconstruction

Spatial coherence at 30nm 



Harmonics are generated by atoms being ripped apart

U(x,t)

Ip electron

laser field hυcutoff = Ip + 3.2Up

ionization potential
of atom

Up α Is λ2

quiver energy of e-



Periodic emission in time and frequency

E field

Harmonic emission

302520151050
Time(fs)

PRL 78, 1251, (1997)
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Compact EUV source from HHG
• By late 1990s, short-pulse, mJ, kHz lasers became available, allowing for HHG with 

compact lasers and extending range to 2.7nm (> 500eV)

• Applications in surface science, plasma imaging (Haight, Salieres, Leone, KM group)

• Controlled phase matching became possible



History of high harmonic generation

• EUV harmonics ≈ 38nm observed by Reintjes et al. in 1977 (JOSA 67, 251 (1977))

• EUV harmonics ≈ 15nm observed by Rhodes et al. in 1987 (JOSA B4, 595 (1987))

• Initial experiments used 20mJ, multi-table-top lasers at 2-10Hz

Efficiency < 10-7



Why use hollow fibers?

laser
EUV

waveguide gasvacuum ionization
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Phase matching!
Science 280, 1412 (1998)

• Phase matching and long interaction length in fibers increases the 
efficiency, improves the EUV mode beam quality and reduces the gas load

• Works well up to 80eV



Limits of hollow fiber phase matching

waveguide gasvacuum ionization
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Higher harmonics are generated at higher laser intensities and higher levels of 
ionization => very difficult to generate HHG efficiently above ≈80eV or 

ionization > 5%

laser
EUV

Phase matching!
Science 280, 1412 (1998)



Low pressure HHG spectrum in argon 
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Region over which phase 
matching can be achieved

500eV



Phase matched signal growth

cL
k π
=∆

• Need to phase match to get 
efficient EUV generation i.e. 
qklaser - kEUV = ∆k = 0

• If ∆k ≠ 0, want to adjust or 
restrict emission from regions 
that are out of phase

• Coherence lengths for HHG 
in the presence of high levels 
of ionization are < 100µm

0=∆k

laser
EUV
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QuasiQuasi--PhasePhase--Matching can adjust for phase Matching can adjust for phase mismis--matchmatch

• Traditional Quasi-Phase-Matching, 
Λ

==∆
mKk m

π2 Λ= Periodicity of nonlinear
medium

1=m 3=m
Periodically poled

materials 

Fejer et al.,JQE 28, 2631 (1992); Opt. 
Lett. 22,1834 (1997)



EUV Photonics: modulated hollow core fibers

150µm dia.

Use “glass-blowing” techniques to 
create modulations of 1mm -
0.25mm periodicity

This modulates the laser intensity, 
and in turn the EUV amplitude and 
phase

Coherence lengths ≈ 10’s - 100’s 
microns



Shorter modulation periods give > 100eV higher energy!

•Cutoff limited by laser 
intensity

•HHG at ≈ keV possible

Nature 421, 51 (2003)



Quasi phase matching of EUV light in the water window in Quasi phase matching of EUV light in the water window in NeNe
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• First phase matching technique at ≈ 100% ionization (Emily Gibson et al., Science 302, 95 (Oct. 
2003))

• Clear pathway to increase flux by several orders of magnitude using longer fibers, tighter 
modulations and higher fields

• HHG has promise as a light source up to keV, for chemical spectroscopies and high-contrast bio-
microscopies in “water window”



QPM will significantly extend the efficient range of HHG
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• Previous phase matching
• Fiber QPM (25fs)
• Fiber QPM (10fs)



Specific routes towards improved EUV HHG sources

• Increase efficient energy range from 80eV to ≈ keV on a desktop -

- modest increase in intensities from 1015 Wcm-2 to < 1016 Wcm-2

- decreased periodicities and use of tapered fibers (e.g. Λ = 0.1mm)

- harmonic generation from ions

- decreasing laser pulsewidth from 20fs to 10fs

- alternate QPM schemes using colliding pulses

- higher rep rate lasers and optimized fibers (length, diameter, 
modulation depth, chirp) will increase flux

- coherently rotating molecules may allow us to optimize recollision
probability

- using shorter wavelengths to drive HHG

- designer pulses will channel laser energy into a single harmonic

- appropriate vision of quantum electronics in the 21st century, 
involving precise control and manipulation of atoms and molecules



EUV HHG present and future

Straight Fiber

Current EUV HHG sources (per harmonic):
• Pulse Energy:  <1nJ @ 2kHz
• Average Power ≈ 2µW at 27nm
• Peak Power : 0.2 MW
• Pulsewidth : < 5 femtoseconds
• Wavelengths : 300nm - 11nm
• Fully spatially coherent
• < Tabletop

Modulated Fiber

Future EUV QPM sources (per harmonic):
• Pulse Energy:  10nJ @ 20-100kHz
• Average Power ≈ 1mW
• Peak Power : 2 MW
• Pulsewidth : picosecond - attosecond
• Wavelengths : 300nm - 1nm
• Fully spatially coherent
• < Desktop



Why EUV?

outidler ωωω =−pump2

Four-Wave Mixing

800nm
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Four-Wave Mixing
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400nm



Why EUV?

Third-Harmonic Generation

outωω =pump3 400nm λout = 133nm

400nm

400nm

outidler ωωω =−pump4

Six-Wave Mixing
1100-2900nm 

or 800nm

λout=104-110nm
or 114nm

400nm
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400nm



Why EUV?
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EUV Nonlinear EUV Nonlinear spectroscopiesspectroscopies

Damascene grating with alternate 
silicon and copper stripes

EUV nonlinear spectroscopies for measuring 
nanometer-scale ultrafast thermal and electronic 
responses of materials



Experimental SetupExperimental Setup

EUV

laser



Impulsive Stimulated Thermal ScatteringImpulsive Stimulated Thermal Scattering



Observe strong experimental EUV modulated signalObserve strong experimental EUV modulated signal
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Filter Filter diagonalizationdiagonalization yields power spectrumyields power spectrum



Theory (cont’d)Theory (cont’d)

• Changes in diffraction efficiency:

• The observed changes in reflectivity of several percent are in agreement with 
theory, assuming a .3nm relative change in height. This deflection was 
independently verified using interferometry for similar experimental conditions.
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Future work:
•Use smaller scale structures
•Understanding temporal structure
•Examine different overcoated materials
•Perform transient grating expt. using multiple beams



Oxygen motion on Pt surface:



CO oscillation on Pt surface:



Conclusion

• “Laser-like” coherent beams in EUV
– full spatial coherence (Science 297, 376 (2002))
– full temporal coherence (Nature 406,164 (2000))
– EUV photonics (Nature 421,51 (2003))

• Advances limited only by our imagination
– compact EUV light sources over sub-keV energy range
– new linear and nonlinear spectroscopies
– nano and element-specific microscopies
– compact imaging systems

• Strong, coordinated, effort abroad
– EU consortia (Imperial College, Lund, FOM, ETH Zurich, Vienna, Max 

Born, Max Plank, Italy, Greece, France)
– Large new consortium in Canada for basic/applied intense fields
– Several laboratories in Japan with large facilities in EUV laser
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